
NOTATION 

v, flow velocity of the fluid; U, instantaneous temperature; x, y, z, moving coordi- 
nates; a, thermal conductivity of the fluid; F, contour of the channel; Uo, initial tempera- 
ture of the fluid; Ur~ temperature of the channel wall; Z, dimensionless length of the chan- 
nel; 0, dimensionless temperature; G, region; G, region with boundary F; 9 , fluidity of the 
f~uid; T, shear stress; Tx and T~, shear stress components; AP, pressure differentialperunit 
length of channel; 4, a function that is a solution of the Dirichlet problem in the Poisson 
equation; X = (X~, X2), a point of two-dimensional Euclidean space; h$, step of the grid 
mh; Yh, set of boundary nodes; CB, a line passing through the interior nodes; ~h, set of all 
regular nodes; LRU, Laplacian operator; A~, difference operator; h* distance from the non- 
regular node X to the boundary node X (+ B~ or X ~ ~) ; T*, step of the grid along the z coor- 

�9 ~ . ! 

dlnate; hio , dlstance from the near-boundary nodes m~ ~ to the boundary nodes Yh ~; Ni~, num- 
ber of thePleft boundary nodes in the matrix in the d'~'rection of XB; N~"~, number'of the right 
boundary nodes in thematrixinthedirection of XB; 9o, fluidity of the~fluid for ~ § O; K 
and m, rheological constants. 
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Heat transfer in a micropolar fluid flowing in a plane channel following an abrupt 
change in the wall temperature is investigated. The obtained results indicate that 
in several cases the fluid microstructure has a considerable effect on the main 
heat-t rans fer charac teris tics. 

The theory of heat-conducting micropolar fluids (MPF) [i] can be used to characterize 
the hydrodynamic and thermal processes in several microstructural fluids (liquid crystals, 
suspensions, blood, etc.) with due consideration of the spinning of the particles in the 
medium. The hydrodynamics of MPF has now been widely investigated. There have been investi- 
gations of free convection, and also of steady heat transfer involving forced convection, 
where it was discovered that the microstructure of the fluid affects the characteristics of 
heat transfer in it. So far, however, due attention has not been paid to such an important 
practical problem as unsteady heat transfer in MPF. 

We consider the following problem. A heat-conducting MPF flows between plane parallel 
plates separated by a distance 2h. Let the temperature of plates and ~F over the whole 
length of the channel be constant and equal to To. At a certain instant the temperature of 
the plates is abruptly altered and becomes equal to Tj # To. We determine the temperature 
field over the cross section and length of the channel in relation to time. We neglect 
energy dissipation, the compressibility of the MPF, axial heat conduction, and mass forces 
and moments. We regard the hydrodynamic velocity profile as stabilized, and the physical 
properties of the MPF as constant. The coordinate origin is on the central line at the en- 
trance section of the channel, which has temperature To. The central line coincides with the 
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x axis, and the normal to the planes coincides with the y axis. 
ity vector v and the microrotation vector v have the form 

v~ = {,~ (y), o, o}, ~,~ = {o, o, ~,~ (y)} 
The energy equation and boundary conditionsin this case can be written as 

aT  O2T aT  
-- a - -  Ox----, 

Ot a y z O x 

T(x, y, 0 ) = T  o , T(0, y, t )=To ,  

The components of the veloc- 

( l )  

(2) 

where a i s  the  t he rma l  d i f f u s i v i t y .  

The s o l u t i o n  of  the  sys tem of  d i f f e r e n t i a l  e q u a t i o n s  r e p r e s e n t i n g  the  hydrodynamics  in  
t h e  g i v e n  a p p r o x i m a t i o n  [1 ] :  

with boundary  conditions 

_ _  d% dP (. + x) d~, ,  + x = , 
d y  z 'dg d x  

do x 

dlt2 

v(=l=h) = O, v(=l=h) = -~--(cuttv)lu=+ k 

leads to the following velocity profile: 

,,~=oo 1 - ~ + 6 ~ T  ~ l , 

dP h 2 2 •  cthk 
- - - -  IP I~-~----- 1 
dx 2 t t + x  2p,+•  k 

k2 = 2tL + x ~ h 2  ' .if= e__ .  
1~+•  ? h 

where 

In (3) and (4) e is a parameter characterizing the interaction of the fluid particles with 
the boundaries and with one another (0 ~ ~ ~ i). We substitute (5) in (i) and bring the 
obtained equation and boundary conditions (2) to dimensionless form: 

where 

dO i~o  0 o  
- -  = ~ t < ? o  , 
0 Fo 09 z O'x 

o (x, ~, o)=  o, o (o, ,}, Vo)= o, 

( O_~y )k..=o ___ O, O(x, _1 ,  Fo)--  1, 

T - -  To " 4 x ~!a~2h at 
O =  Ti To x - -  3Pe h Pe , F o = - - ,  " ~ - -  " ' a h a 

(3) 

(4) 

(5) 

(6) 

(7) 

chky [ \ 
f(Y)= I--Y2+6[ chk l),vav(N) is the average velocity of a Newtonian fluid with shear vis- 

cosity ~ + • in a channel of height 2h. 

We also investigate the effect of the fluid microstructure on such an important heat- 
transfer characteristic as the local Nusselt number, which by_definition relates the local 
heat-transfer coefficient to the temperature difference T -- T. Then 
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where 

2 

0=I++,( I 

- -  -- 1 of (y) @. 
o 

We solve the problem (6), (7) numerically by a finite-difference method in the region 
of the variables G = {0~ x~l, 0~ y~. i, 0 ~ Fo~ i}. In the following expression of the 
algorithm of the solution we omit for simplicity the tilde above the dimensionless variables. 

In region G we construct a uniform net with steps h~, h2, T 

= {x i  = iht ,  y~ = ]hz, For~ = n% i = 0, 1 . . . . .  N t ,  

] = 0 ,  1 . . . .  , N2, n = O ,  1 . . . . .  N ,  h i N l =  l ,  /hN2- -  1, l r N = l } .  

We denote the value of the function 0(x, y, Fo) at the point (• Fon) by @i,j,n. On the 
net ~we approximate the initial problem by the following implicit difference scheme" 

0~,~.,. - - % . j , . _ ,  = Oi.j+~.,, - -  20~,j. . ,  + O~,j_~,., _ f(yj)O~3.,, --0~_~.~.~, 
h 2 hi 2 

i = l ,  Ni--1, ] - ~ I , N ~ . - - L  n = t , N ,  

To r e a l i z e  t h e  p r o p o s e d  d i f f e r e n c e  s cheme  we u s e  a n  i t e r a t i o n  p r o c e s s  o f  t h e  f o r m  

0(~+o,5~ 0 - �9 ~r , ,0 (~+o 5 ) _ O ( S + o . ~ )  ] i , j ,n - -  f , , t , n - x  _~_~ i . j + l , n - -  Z i,/,n" T .  i ,j--l,n 

[ (8) 
--f(gj) & , j = 1, 2, . . . ,  N , - - I ,  

i , l , n  = i ,O ,n  , = 

O ( s - - F 0 , 5 )  ot~(s-F 0,5) ~ t~(s+0,5) 
i,]q-i ,n - -  "~'ui,i,n "1-~i,/--1 ,n o(s--' 1) 

i,/,n - - ' o i , j . n - I  

e t . L  - e t ,  ,:.. 

hi 
, i = 1 ,  2, . . . , N x ,  -- f (~o) 

o ( s +  1 ) 
o , i , n  ~ O, 

(9 )  

Here s is the number of the iteration, (s + 0.5) is the number of the intermediate iteration 
(subiteration). 

The system of equations (8) is solved by the pivotal method with fixedvaluesof i=l-~. 
The solution is then made more accurate and is found in explicit form from the system 
of equations (9) with j = i, N2 -- i. The calculation procedure on each n-layer is repeated 
until the inequality 

maxl@!s~ l) A!q I~" t , l ,n - -  ~t , l ,n l  " ~  8T 
i , j  

] 
,4 

,2 ! 

@i 

0 0/2 ~ ~ l ~ ~ 

Fig. i. Temperature field @ along 
channel with Fo = 1.0; ~ = 0.01 (i, 
l'); 0.04 (2, 2'); 0.07 (3, 3'); 0.i 
(4, 4'); 0.2 (5, 5'); 0.4 (6, 6'): 
1-6) e = 0; 1'-6') k = 0.i; ~ = 10/7. 
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Fig. 2. Time dependence of Nu along channel: a) Fo = 0.2 
(i, 2); 0.3 (3, 4); 1.0 (5, 6): i, 3, 5) s = 0; 2, 4, 6) 
k = 0.i; ~ = 10/7; b) ~ = 0.07 (i, 3); 0. i (2, 4); 0.2 
(5, 6); 0.4 (7, 8): i, 2, 5, 7) g = 0; 3, 4, 6, 8) k = 0.i; 
e = 10/7. 

is satisfied, where s T is the prescribed accuracy of convergence of the iteration process. 

The problem was solved on a BESM-6 computer for different values of k and ~. Considera- 
tion of the microstructure led to maximum variation of the theoretical values of v x and @ 
when ~ = 0. A change in ~ with k constant is formally equivalent in effect on the results 
to a particular change in e with k and s constant and, hence, in subsequent calculations e is 
assumed equal to zero throughout. 

The results of the numerical calculation are given in the figures. There is a consider- 
able difference in the temperatures and Nusselt numbers calculated with the aid of Newtonian 
fluid theory with microstructure neglected (T(N) and Nu(N)) and within the framework of MPF 
theory (T(MP) and Nu(MP)). This is particularly clearly revealed by Figs. 1 and 2. With in- 
crease in channel length i consideration of the microstructure leads to an increase in the 
indicated difference. At certain values of R, depending on the values of Fo, Nu reaches a 
maximum and then decreases. At low k and certain values of s =• /(p + ~/2), i and Fo with 
due consideration of the microstructure Nu and the temperature on the channel axis are re- 
duced by a factor of two or more. The difference of T(N) and Nu(N) from T(MP) and Nu(MP), 
calculated for the same?points in the channel and the same time, is greater, the smaller k, 
i.e., the smaller the transverse dimension of the channel (Fig. 3). We note that the change 
in T(~iP) and Nu(MP) with reduction of k occurs mainly in the region 0.5 < k < ~. Further re- 
duction of k leads to a small relative change in these quantities (Figs. 3, 4). 

We introduce the length of the thermal initial portion ~it, defined as the distance 
from the entrance section at which for a specific value oi the time Fo the Nusselt number 
assumes a constant value with prescribed accuracy. If the accuracy is equal to 5%, for in- 
stance then for k = 0.i and g = 10/7 with Fo = 0.3, l(N)/l(MP) -- 1 8 (Fig. 2a) 

�9 IE it " " 

We define the time of onset of the steady-state Fost as the time on the elapse of which 
Nu differs by not more than 5% from its value when Fo + ~. It is apparent then from Fig. 2b 
that in the region ~ = 0.07-0.2 consideration of the microstructure at k = 0.i and e =10/7 
leads to an increase in Fost by 30-60% (Fig. 2b). The situation is the same when the tempera- 
ture field is stabilized at a specific distance from the entrance. For instance, when F o = 
0.6 the difference between the temperature on the axis at a distance from the entrance x = 
0.4, calculated within the framework of Newtonian fluid theory, and the steady value is 1.5% 
(in Fig. 4 the curves corresponding to Fo = 1.0 coincide with the curves for Fo § =). When 
k = 0.i and s = 10/7, however, for the same x = 0.4 and Fo = 0.6 the temperature profile is 
still far from the steady profile. If 0 = @(x, y,) Fo),then 

O'(-N)(0.4; 0; co) @~(MP)(0.4; 0; co) 
O(N~ (0.4; 0; 0.6) O(MP)(0,4; 0; 0,87) 
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Fig. 3. Dependence of L = Nu(N)/Nu(MP) -- 1 onk forFo =i.0 and e= 10/7; 
= 0.4 (i); 0.2 (2); 0.i (3). 

Fig. 4. Dependence of temperature field 0 on time Fo and parameters k 
and c for ~ = 0.4: i) k, any value; s = O, Fo = 0.4; 2) 0.i; 10/7; 0.4; 
3) any value; 0; 0.6; 4) any value; 0; i; 5) 3; 0.4; 0.6; 6) i; 0.4; 
0.6; 7) 5, 10/7; 0.6; 8) 3; 10/7; 0.6; 9) 0.i; 10/7; 0.6; i0) i; 10/7; 
0.6; ii) 4; 10/7; I; 12) 3; 10/7; i; 13) 2; 10/7; i; 14) i; 10/7; i; 
15) O; 10/7; i. 

Thus, in the given case the ~ime for establishment of the steady value of the temperature on 
the axis, accurate to within 1.5%, is increased by 45%. 

Ariman et al. [2] cite numerical values of the coefficient ~,'p, and y for blood with 
a red corpuscle content of 40%. We note here that the boundary condition of constancy of 
microrotation close to the wall (absence of moment stresses) corresponds well with the ex- 
perimental results. A comparison of the velocity profile (5), obtained with boundary condi- 
tions of general form (4), with that obtained in [3] shows that when 

2 (~ + • - -  th k) 
= (i0) 

2(~+@k--• 

the second boundary condition from (4) implies the::absence of moment stresses on the wall. 
The use of (I0) and numerica~ values of the viscosity coefficients for blood shows that when 
Fo = 0.3, l~ ) > l{ MP) by 17%, and when ~ = 0.i, Fo(N) < Fo~) by 16% 

it ~ st " 

The above analysis of the results of a numerical calculation indicates that calculation 
of many characteristics of unsteady heat transfer for the flow of microstructural fluids in 
capillary channels within the framework of Newtonian fluid theory can lead to incorrect re- 
suits. The use of MPF theory for the calculation enables us to take into account the effect 
of microstructure on the hydrodynamics and heat transfer. 

NOTATION 

T, temperature; v, velocity.~ ~, microrotation; t, time; a, thermal diffusivity; ~, ~, ~, 
coefficients of viscosity of micropolar fluid; dP/dx, pressure gradient; 2h, distance between 
planes forming channel; Fo and Nu, Fourier and Nusselt numbers. 
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